许多语音助手公司采取了针对特定行业(如汽车服务)或特定任务类型(如预约安排)的垂直特定方法,原因如下:
- 执行难度
将呼叫委托给人工智能时,对话流程的质量标准非常高——很快就会变得复杂和具体。为这些垂直领域的“极端情况”而设计的公司更有可能成功(例如,一般模型可能无法理解的独特术语)。
- 法规和许可证
一些语音助手公司面临特殊的法规限制和认证要求。医疗保健行业(例如 HIPAA 合规性)是一个典型例子,尽管这种情况也出现在销售等类别中,这些类别在国家层面都有AI电话营销法规。
- 集成
在某些类别中,为了提供良好的用户体验(无论是对企业还是消费者),可能需要进行大量的集成或专门的集成。除非是为了满足特定用例的需求,否则这些集成可能不值得构建。
- 与其他软件的结合
语音是进入预订、续订、报价等核心客户行为的自然入口。在某些情况下,这将成为这些企业进入更广泛的垂直 SaaS 平台的机会——特别是当客户群仍然主要在线下运营时。
2、总体观点
我们正处于从 1.0 AI 语音(电话树)向 2.0 AI语音(基于LLM)的过渡期。在过去大约六个月中,2.0公司不断涌现。虽然 1.0 公司目前可能在准确性上占优,但从长远来看,2.0 方法在可扩展性和准确性方面将更具优势。
不太可能存在一种通用的企业语音助手模型或平台,因为不同垂直领域之间存在一些关键差异:
- 市场进入策略(GTM)和“杀手级功能”。
这可能预示着垂直领域语音助手的兴起,这些专业代理在用户界面(UI)设计上具有强烈的个性化需求。这要求创始人团队具备深厚的领域专业知识或对特定领域有浓厚兴趣。劳动力成本是许多企业的主要成本中心,对于能够“做对”的公司来说,总可寻址市场(TAM)是巨大的。
近期的机会可能出现在那些对劳动力依赖性强、劳动力短缺严重且呼叫复杂度较低的行业。随着客服人员变得更加熟练,他们将能够处理更复杂的呼叫。
3、我们看到的机会
一、基于LLM,但不一定从一开始就完全自动化
AI 语音助手的&34;强形式&34;将是完全由大型语言模型(LLM)驱动的对话,而不是传统的交互式语音响应(IVR)或电话树方法。然而,鉴于 LLM 并非始终 100% 可靠,对于更敏感或价值较大的交易,可能会暂时需要&34;人为介入&34;。这突显了垂直特定工作流程的重要性,因为它们可以最大化成功的可能性,同时最小化人为干预和边缘情况的发生。
二、定制模型与提示LLM方法的结合
B2B 语音助手需要处理特定领域(或垂直特定)的对话,而通用的 LLM 可能不足以应对这些需求。许多公司正在根据每个客户的数据(数百或数千个数据点)调整模型,并可能将其推断回公司范围内的基础模型。定制调整甚至可能进一步针对企业客户进行。注意:一些公司可能会针对其特定用例调整&34;通用&34;模型(供客户使用),然后根据每个客户进行定制提示。
三、拥有领域专业知识的技术团队
鉴于 B2B 语音助手的复杂性,拥有一定的人工智能背景将有助于(即使不是必需的)构建和扩展高质量的解决方案。然而,了解如何将产品包装并进入特定垂直领域同样重要——这需要相应的领域专业知识或浓厚兴趣。您不必拥有人工智能博士学位就能构建企业级语音助手。
四、对集成和生态系统有深刻的洞察
与上述情况类似,每个垂直领域的买家在购买前通常希望看到一些特定的功能或集成。实际上,这可能是产品在他们的评估中从&34;有用&34;转变为&34;神奇&34;的关键点。这也是从垂直领域开始构建产品的意义所在。
五、要么面向&34;企业级&34;市场,要么有强劲的产品主导增长(PLG)趋势
对于那些收入主要集中在顶级公司/供应商的垂直行业,语音助手公司可能会从企业级市场开始,最终通过自助产品&34;渗透&34;到中小企业。中小企业客户迫切需要解决方案,并愿意尝试各种选项——但他们可能无法提供足够的数据规模/质量,让初创公司将模型调整到企业级水平。