哈喽,大家好。

最近大家都在玩 AI 绘画,我在 GitHub 上找了一个开源项目,给大家分享一下。

今天分享的这个项目是用 GAN​ 生成对抗网络实现的,关于GAN的原理和实战我们之前分享过很多文章,想了解的朋友可以去翻历史文章。

源码和数据集文末获取,下面分享如何训练、运行项目。

1. 准备环境

安装 tensorflow-gpu 1.15.0​,GPU显卡使用2080Ti​,cuda版本10.0。

git下载项目AnimeGANv2源码。

搭建好环境后,还需要准备数据集和vgg19。

下载dataset.zip​压缩文件,里面包含 6k 张真实图片和2k张漫画图片,用于GAN的训练。

生成对抗网络,AI将图片转成漫画风格vgg19是用来计算损失的,下面会有详细介绍。

2. 网络模型

生成对抗网络需要定义两个模型,一个是生成器,一个是判别器。

生成器网络定义如下:

生成器中主要的模块是反向残差块

残差结构(a)和反向残差块(b)

判别器网络结构如下:

3. 损失

计算损失之前先用VGG19​网路将图片向量化。这个过程有点像NLP​中的Embedding操作。

Eembedding​是讲词转化成向量,VGG19是讲图片转化成向量。

VGG19定义

计算损失部分逻辑如下:

这里使用vgg19​分别计算真实图片(参数real)与生成的图片(参数fake)​的损失,生成的图片(参数fake)与漫画风格(参数anime)的损失。

最终给这两个损失不同的权重,这样是的生成器生成的图片,既保留了真实图片的样子,又向漫画风格进行迁移

4. 训练

在项目目录下执行以下命令开始训练

运行成功后,可以看到一下数据。

同时,也可以看到损失在不断下降。

源码和数据集都已经打包好了,需要的朋友评论区留言即可。

如果大家觉得本文对你有用就点个 在看 鼓励一下吧,后续我会持续分享优秀的 Python+AI 项目。