当提取声音特征集合以后,就可以识别这些特征所代表的单词。本节重点关注单个单词的识别。识别系统的输入是从语音信号中提取出的特征参数,如LPC预测编码参数,当然,单词对应于字母序列,那语音识别人工智能技术的识别方式有哪些?语音识别所采用的方法一般有模板匹配法、随机模型法和概率语法分析法三种。



(1)模板(template)匹配法

语音识别人工智能技术的识别方式有哪些?在训练阶段,用户将词汇表中的每一个词依次说一遍,并且将其特征向量作为模板存入模板库。在识别阶段,将输入语音的特征向量序列,依次与模板库中的每个模板进行相似度比较,将相似度最高者作为识别结果输出。

(2)随机模型法

随机模型法是目前语音识别研究的主流。其突出的代表是隐马尔可夫模型。语音信号在足够短的时间段上的信号特征近似于稳定,而总的过程可看成是依次相对稳定的某一特性过渡到另一特性。隐马尔可夫模型则用概率统计的方法来描述这样一种时变的过程。

(3)概率语法分析法

这种方法是用于大长度范围的连续语音识别。语音学家通过研究不同的语音语谱图及其变化发现,虽然不同的人说同一些语音时,相应的语谱及其变化有种种差异,但是总有一些共同的特点足以使他们区别于其他语音,也即语音学家提出的"区别性特征"。

另一方面,人类的语言要受词法、语法、语义等约束,人在识别语音的过程中充分应用了这些约束以及对话环境的有关信息。于是,将语音识别专家提出的"区别性特征"与来自构词、句法、语义等语用约束相互结合,就可以构成一个"自底向上"或"自顶向下"的交互作用的知识系统,不同层次的知识可以用若干规则来描述。

除了上面的三种语音识别方法外,还有许多其他的语音识别方法。例如,基于人工神经网络的语音识别方法,是目前的一个研究热点。